1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
| import fastdeploy as fd import cv2 import numpy as np
option = fd.RuntimeOption() option.use_gpu(device_id=0) model = fd.vision.detection.PPYOLOE( model_file = "ppyoloe_crn_l_300e_coco/model.pdmodel", params_file = "ppyoloe_crn_l_300e_coco/model.pdiparams", config_file = "ppyoloe_crn_l_300e_coco/infer_cfg.yml", runtime_option = option )
camera_id = 0 capture = cv2.VideoCapture(camera_id) capture.set(3, 1280) capture.set(4, 720)
fps = int(capture.get(cv2.CAP_PROP_FPS)) frame_count = int(capture.get(cv2.CAP_PROP_FRAME_COUNT)) print("fps: %d, frame_count: %d" % (fps, frame_count))
labels = [ "person", "bicycle", "car", "motorcycle", "airplane", "bus", "train", "truck", "boat", "traffic light", "fire hydrant", "stop sign", "parking meter", "bench", "bird", "cat", "dog", "horse", "sheep", "cow", "elephant", "bear", "zebra", "giraffe", "backpack", "umbrella", "handbag", "tie", "suitcase", "frisbee", "skis", "snowboard", "sports ball", "kite", "baseball bat", "baseball glove", "skateboard", "surfboard", "tennis racket", "bottle", "wine glass", "cup", "fork", "knife", "spoon", "bowl", "banana", "apple", "sandwich", "orange", "broccoli", "carrot", "hot dog", "pizza", "donut", "cake", "chair", "couch", "potted plant", "bed", "dining table", "toilet", "tv", "laptop", "mouse", "remote", "keyboard", "cell phone", "microwave", "oven", "toaster", "sink", "refrigerator", "book", "clock", "vase", "scissors", "teddy bear", "hair drier", "toothbrush" ]
while (1): ret, frame = capture.read() if not ret: break result = model.predict(frame) vis_im = fd.vision.visualize.vis_detection(frame, result, labels=labels, line_size=2, score_threshold=0.5)
im = np.array(vis_im)
width = int(im.shape[1] * 200 / 100) height = int(im.shape[0] * 200 / 100)
resized_image = cv2.resize(im, (width, height))
cv2.imshow('Mask Detection', resized_image) if cv2.waitKey(1) & 0xFF == ord('q'): break
|