FastDeploy部署模型
2024-10-22 14:52:45

FastDeploy部署模型

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import fastdeploy as fd
import cv2
import numpy as np

# model_url = "./ppyoloe_crn_l_300e_coco.tgz"
# image_url = "./test_det.jpg"
# fd.download_and_decompress(model_url, path=".")
# fd.download(image_url, path=".")

# 模型推理的配置信息
option = fd.RuntimeOption()
option.use_gpu(device_id=0)
model = fd.vision.detection.PPYOLOE(
model_file = "ppyoloe_crn_l_300e_coco/model.pdmodel",
params_file = "ppyoloe_crn_l_300e_coco/model.pdiparams",
config_file = "ppyoloe_crn_l_300e_coco/infer_cfg.yml",
runtime_option = option
)

# 流媒体的设备编号
camera_id = 0
capture = cv2.VideoCapture(camera_id)
capture.set(3, 1280)
capture.set(4, 720)

fps = int(capture.get(cv2.CAP_PROP_FPS))
frame_count = int(capture.get(cv2.CAP_PROP_FRAME_COUNT))
print("fps: %d, frame_count: %d" % (fps, frame_count))

# 标签,可以在infer_cfg.yml去进行查看
labels = [
"person",
"bicycle",
"car",
"motorcycle",
"airplane",
"bus",
"train",
"truck",
"boat",
"traffic light",
"fire hydrant",
"stop sign",
"parking meter",
"bench",
"bird",
"cat",
"dog",
"horse",
"sheep",
"cow",
"elephant",
"bear",
"zebra",
"giraffe",
"backpack",
"umbrella",
"handbag",
"tie",
"suitcase",
"frisbee",
"skis",
"snowboard",
"sports ball",
"kite",
"baseball bat",
"baseball glove",
"skateboard",
"surfboard",
"tennis racket",
"bottle",
"wine glass",
"cup",
"fork",
"knife",
"spoon",
"bowl",
"banana",
"apple",
"sandwich",
"orange",
"broccoli",
"carrot",
"hot dog",
"pizza",
"donut",
"cake",
"chair",
"couch",
"potted plant",
"bed",
"dining table",
"toilet",
"tv",
"laptop",
"mouse",
"remote",
"keyboard",
"cell phone",
"microwave",
"oven",
"toaster",
"sink",
"refrigerator",
"book",
"clock",
"vase",
"scissors",
"teddy bear",
"hair drier",
"toothbrush"
]

# index = 1
while (1):
ret, frame = capture.read()
if not ret:
break
# print('detect frame: %d' % (index))
# index += 1
result = model.predict(frame)
vis_im = fd.vision.visualize.vis_detection(frame, result, labels=labels, line_size=2, score_threshold=0.5)

im = np.array(vis_im)

# 计算缩放后的新尺寸
width = int(im.shape[1] * 200 / 100)
height = int(im.shape[0] * 200 / 100)

# 使用cv2.resize来缩放图像
resized_image = cv2.resize(im, (width, height))

# cv2.namedWindow("abc", cv2.WINDOW_AUTOSIZE)
cv2.imshow('Mask Detection', resized_image)
if cv2.waitKey(1) & 0xFF == ord('q'):
break